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Time-Dependent Correlations for a 
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We derive various sum rules for the time-displaced structure function of a 
classical one-component plasma subjected to an external uniform magnetic field. 
When the plasma has some translational invariance (i.e., homogeneous or trans- 
lation-invariant along the field), we find that there are long-wavelength 
oscillations with well-defined frequencies. The results are obtained from linear 
response and macroscopic electrodynamics, as well as from the microscopic 
equations of motion (BBGKY hierarchy). In the presence of the magnetic field, 
the time-displaced structure function has a polynomial decay at large distances, 
even in the homogeneous case. When the plasma has no translational 
invariance, examples show a more complicated temporal behaviour in the long- 
length-scale limit, involving a superposition of oscillations over a continuous 
range of frequencies. 

KEY WORDS: Sum rules; time-dependent correlations; one-component 
plasma; magnetic field. 

1. I N T R O D U C T I O N  

The  p u r p o s e  of this  p a p e r  is to genera l ize  s u m  rules a b o u t  the t ime-depen -  
den t  co r re l a t ions  in  a o n e - c o m p o n e n t  p l a s m a  to the case w h e n  the p l a s m a  
is s u b m i t t e d  to a n  ex te rna l  u n i f o r m  m a g n e t i c  field. The  presence  of a 

m a g n e t i c  field b r ings  in  n e w  theore t ica l ly  in te res t ing  features,  a n d  it shou ld  
also be n o t e d  tha t  expe r imen t s  o n  o n e - c o m p o n e n t  p l a smas  in m a g n e t i c  
fields are be ing  per formed ,  (1'2) 

A o n e - c o m p o n e n t  p l a s m a  is a sys tem of iden t ica l  par t ic les  of  charge  e 
a n d  mass  m in  a fixed b a c k g r o u n d  of  oppos i t e  charge.  F o r  s implici ty ,  we 
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use the framework of classical mechanics (generalization to quantum 
mechanics would be easy). The time-dependent charge correlation function 
(structure function) is defined as 

S(q, t lq i )=eZ[(N(q, t )N(ql ,0))-(U(q, t ) ) (U(ql ,0))]  (1.1) 

where eN(q, t) is the microscopic charge density at point q and time t and 
( - . . )  is the equilibrium average at inverse temperaturefi. 

In the case without a magnetic field, S was shown to obey a rather 
general sum rule involving a very simple oscillatory behavior ~3'4/ 

1 S , tlql) 05t (1.2) fl f dq l dq~ ~7] (q =cos 

For a homogeneous plasma, 03 is the plasma frequency and (1.2) is 
equivalent to a well-known long-wavelength sum rule. It is remarkable that 
(1.2) also holds for a large class of inhomogeneous plasmas when the 
position-dependent background charge density epb(q ) has at infinity a limit 
ep~(Q), which may, however, depend upon the direction ~ in which q 
recedes to infinity; then o3 2 is the angular average of the square plasma fre- 
quency at infinity: 

052 C2 f - - -  d(2 p~((2) (1.3) --m 
In the present paper, we wish to generalize (1.2) to the case when there 

is an external uniform magnetic field [of course, at t = 0 ,  (1.2) will be 
simply unchanged, since there are no static magnetic effects in classical 
statistical mechanics (Bohr-Van Leeuwen theorem)]. It will be found that 
a simple result, more or less similar to (1.2), is obtained, only for a more 
restricted class of cases, when the plasma is translationally invariant along 
the field (this includes the simplest case of homogeneous plasma). In other 
situations, it may still be possible to compute the left-hand side of (1.2), but 
the result is neither simple nor of a general form. 

Even in the simplest case of a homogeneous plasma, it is already clear 
that the integral on the left-hand side of (1.2) requires some further 
specification in order to have a meaning. In the presence of a uniform 
magnetic field, S(q, tlq~), considered as a function of q, is a charge dis- 
tribution which carries no net total charge (at t = 0, this statement just 
expresses perfect screening, and it remains true at t r 0 by charge conser- 
vation); however, S is expected to carry an electrical quadrupole moment 
(the lowest multipole moment compatible with the symmetry of the 
system). Therefore, 

1 
f dqi~-~l[S(q't[ql) 
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behaves like the potential created at the origin by a quadrupole moment 
centered at q, and this integral decays only as Iql-3 for large q; the final 
integral upon q is not absolutely convergent. We perform this integral on 
some finite domain A, defining 

IA(t)= fAdq f dq~ F@i S(q, tlq~) (1,4) 

and we shall show in the following that there are different ways of taking 
the limit jAi --+ c,v, which give different values for lira IA. 

AS in Ref. 4, we shall first derive the sum rules by using a linear 
response argument (Section 2), taking for granted that macroscopic physics 
is valid on long length scales (the special thing about one-component 
plasmas is that long-wavelength charge oscillations are not damped). In 
Section 3, the problem is investigated from a microscopic point of view, 
based upon the BBGKY hierarchy and reasonable clustering assumptions. 

In the homogeneous OCP (or when there is at least translational 
invariance along the magnetic field), the microscopic long-wavelength tem- 
poral behavior agrees exactly with that predicted by macroscopic elec- 
trodynamics. This is because the BBGKY hierarchy has an exact closure in 
this limit, which relies on sum rules valid for charged systems. We have, 
however, not been able to extend the theorem to more general 
inhomogeneous systems, due to the lack of information on the spatial 
decay of the correlations in complicated cases. 

2. L INEAR R E S P O N S E  A P P R O A C H  

2.1. M e t h o d  

The approach used in this section relies upon the assumption that the 
linear response of the plasma to an external charge is correctly described 
for long length scales by a simple macroscopic dielectric tensor. The infor- 
mation about the response is converted into information about the 
correlations through the use of the fluctuation-dissipation theorem. (5t 

When a system that was in equilibrium is subjected to a perturbation 
described by a Hamiltonian A cos cot, where A is a dynamical variable, the 
change of the average value of a dynamical variable B is of the form 
Re[zBA(co)exp(--icot)], to first order in A; this defines the response 
function 7~BA(CO). On the other hand, in the unperturbed system in 
equilibrium, we can define a time-dependent correlation function 

CuA(t) = ( B(t) A(0) ) -  ( B(t) )< A(O) ) (2.1) 
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and its Fourier transform 

C BA( ~O ) = "~n _ ~ dt C BA( t ) exp(ie)t) (2.2) 

The fluctuation-dissipation theorem, (s) which relates )~BA and CBA, is, in its 
classical version, 

coCoA(co) = --(1/~/~) Im Z~A(e)) (2.3) 

This simple form holds under the assumption that A and B have the same 
parity under time reversal and that )~BA is unchanged by a reversal of the 
magnetic field. 

Here, we choose the perturbation as caused by an external oscillating 
point charge of magnitude cos cot located at the origin, and the variable B 
as the charge density at point q; therefore 

A = e  f dq 1 1 S(q  I ) (2.4) 

B = B(q) = eU(q) (2.5) 

The charge density induced at q, i.e., the change of the statistical average of 
eN(q), is of the form Re[p(q, co)exp(-icot)] and the fluctuation-dis- 
sipation theorem (2.3) gives 

1 1 r +  ~~ do) 
; dql l--d-~l~ S(q' tl ql)= - - - -  ~ - -  Im p(q, oo) (2.6) 

and by integration on a domain A, 

IA(t)= f A dq f dql [-~l~ S(q, t 'ql)  

_ i f+ d o 
~fi J ~ co Im QA(o3) exp(-icot) 

where 

(2.7) 

t �9 

QA(c~ = JA dq p(q, co) (2.8) 

represents the total charge induced in A. Therefore, In(t ) can be obtained 
from Q A ( O ) ) ,  which will now be computed in a variety of cases, 
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2.2. Homogeneous Plasma 

We consider a homogeneous plasma: the background charge density 
has the uniform value -epb .  There is an external uniform magnetic field B. 
In the presence of an external charge density of the form 
Re[p~• exp(-icot)] ,  the linearized equations of motion on a 
macroscopic scale are 

V2~b = -4~(p  + Pext) (2.9a) 

C 2 e 
-- icoj = -- - -  p b V O  4- - -  j / x  B (2.9b) 

m m 

icop = V . j  (2.9c) 

where ~b, p, and j represent the induced electrical potential, charge density, 
and current density, respectively, in the usual complex representation (the 
actual electrical potential is Re[~bexp(-icot)], etc.). Combining Eqs. 
(2.9a)-(2.9c) and using Cartesian coordinates q = (x, y, z) with the z axis 
parallel to the magnetic field B, we obtain 

where 

(2.1o) 

co 2 - -  cop2 (J)2 - -  {0p  2 - -  COc2 

e l f -  co2 , 8 _ -  2 2 (2.11) 
gO - -  COc 

functions ; cop are the well-known parallel and perpendicular dielectric (6) 
and coc are the plasma and cyclotron frequencies defined by 

(2.12) 2 _ 47r(e2/rn)pb,  co c = e B / m  cop--  

The total charge QA(CO) induced in a large domain A by a point 
charge at the origin must be correctly given by taking Pext = 6(q) ,  solving 
(2.10) for ~b, obtaining p from (2.9a), and using it in (2.8). This is because 
QA is sensitive only to the long-wavelength space Fourier components of 
p(q ,  co), and they are correctly given by the macroscopic approach, 
although the details of p(q ,  co) are not. Actually, although this program can 
be carried on in position space, it is simpler to work with Fourier trans- 
forms. The result for 

r co) = I dq e - i k q p ( q ,  co) (2.13) 

822/47,,'1 2-16 
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is valid in the small-k limit, and must  be writ ten as 

( 0 2  2 
- -  ( L ) c  

lira r 0 , ( 0 ) =  2 ~ 2 2 ~ 2 ~ - 1  (2.14) 
Ikl ~0 (0 -- (0;, -- (0c + ( % ( 0 ~ / ( 0 )  COS" 0 

where 0 is the angle between the field B and the wave vector  k. It should be 
noted that  this limit depends upon  the direction 0 of k. As a consequence,  
as IAI--, oo, the behavior  of QA((0) depends upon  the way in which A 
becomes large. 

Let us choose for A a cylinder of radius R and length 2L, with its 
center at the origin and its axis u mak ing  an angle 0 with B. Then,  the 
"wide-cylinder" limit of QA is (2.14): 

lim lira QA((0)= lim tS(Ikl, 0, (0) (2.15) 
L ~ o o  R ~ z c  [ k l ~ 0  

since taking the first limit R ~ oo amoun t s  to taking k along u in (2.13), 
With (0 unders tood  as having an infinitesimal positive imaginary  par t  
which ensures that  the per turba t ion  is in t roduced adiabatically,  after some 
algebra we find, from (2.7), (2.8), (2.!4), and (2.15), the general izat ion of 
(1.2) to the present  case: 

1 
fl lim lim IA(t ) -  2 _(02 [((02+--(0~)COS(0+t--((02---(0~ 2) cOs(0 t]  

L ~ o o  R ~ ct:~ ( 0 +  _ 

(2.16) 

where (0+ and c o  are the poles of ~, i.e., 

, 2 0 1 1 / 2 }  (02+ ~{(0p 2 (2.17) = + ( 0 c - +  . 2 , 2  . . (02 _ q-  ~ c )  - -  ~tCUp c COS2  

In the special case 0 = 0 ,  the r ight-hand side of (2.16) is simply cos cop/; in 
the special case 0 = re/2, it is 

( 0 2  2 
cos[((0  + (0,2)1/2t] + 

O,)p ~_ ( 0  c 2 2 (2.18) 

At t = 0, the result is always 1, independent  of B (no static magnet ic  effect). 
For  B = 0 ,  one recovers cos (opt, i.e., (1.2). 

In the case where the cylinder axis is parallel to B, we can also com- 
pute the "long-cylinder" limit fi l ime ~ ~ limE ~ ~ IA(t); since this amounts  
to taking k normal  to u, the result is (2.18), the same as for a "wide cylin- 
der" with its axis normal  to B. 

In the present  case of a homogeneous  plasma,  (2.16) can also be writ- 
ten in other  forms, by taking advantage  of the fact that  S(q, t Lq~) depends 
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upon q and q~ only through q - q x .  In terms of the Fourier-transformed 
structure function 

S(k, t ) = f  dqe ik.(q q~tS(q, tlql) (2.19) 

(2.16) becomes 

k 2 1 
S(rkl' O' t) l<~o 4~zfl co + _ 2 - -  (.02 E ( ( ' 0 2  - -  (D2)  COS (.0 + t - -  ((.02_ - -  ( .02) COS (2) t ]  

(2.20) 

The left-hand side of (2.16) can also be expressed as a second moment of S 
in posit ion space: 

lim lira I , ( t ) = - 2 r c  lim Jim f dqq2S(q,t]O) (2.21) 
L ~ o o  R ~ o r a  L ~ o  A 

where q, is the component of q along the cylinder axis. 
Equation (2.20) makes it apparent that the simple time dependence of 

the right-hand side of (2.16), involving only discrete frequencies co+ and 
co_, has been obtained because the limit of I ,  has been taken in special 
ways that select one direction for k; only the two wave frequencies 
associated with that direction appear. Other ways of taking the limit will in 
general give whole frequency ranges. For instance, if we take for A a sphere 
of radius R centered at the origin, ~(k, co) first must be averaged on all the 
directions of k: 

lira QA(co)= lim 1(~ d(cosO) P(lk],O, co) (2.22) 
R ~ o o  I k l ~ 0  2 J - I  

From (2.7), (2.14), and (2.22), we now find 

r ;Z 7 fl lira IA(t)= i"rw~"~ dcog(og)coscot+ dcog(co) coscot (2.23) 
R ~ o o  ~0  

where 

g(co)= [co2-co21 
C~ coo(cop 2 + ~ - c~ 1/2 (2.24) 

The range of frequencies in (2.23) covers all the values given by (2.17) for 
any cos 0. 

For large ]q], the asymptotic behavior of the induced charge density 
p(q, co) is determined by the singularity (2.14) at k = 0  (under the 
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assumption that this singularity is the only one). Therefore, for obvious 
dimensional reasons, p(q, co) decays like Iq[-3, and so does the left-hand 
side of (2.6), as foresen in the Introduction. 

Similarly, the asymptotic behavior of S(q, t L q l )  for large Lql is deter- 
mined by the singularity of S(k, t) at k = 0 .  Since, from (2.20), this 
singularity is of the form k 2 times a function of 0, S(q, t lq~) decays like 
Iq1-5. Let us remark that this algebraic decay would not be easily revealed 
by a small-t expansion of (2.20); in an expansion in powers of t 2, up to 
order t 6 the coefficients are regular functions of k (linear combinations of 
k 2 and k 2 cos 2 0 = k~), and one has to go to order t 8 to see a singular term 
k 2 cos 4 0 = k4/k 2 in the coefficient. 

From (2.20), it is easy to obtain information about the charge-current 
correlation function, defined as 

d(q, t l ql) = e2(j(q, t) N(ql, O) ) (2.25) 

where eJ is the microscopic electrical curent density; the Fourier transform 
is 

d(k, t) = f dq exp[ - i k .  ( q -  ql)]  d(q, t l q~) (2.26) 

For large length scales, eJ(q, t) is related to eN(q, t) by equations similar to 
(2.9) (with p~xt=0), and the small-k behavior of ~(k, t) can be obtained 
from the small-k behavior of S(k, t). In terms of the unit vector along the 
field b =  B/IBI, the result is 

--icop 2 1 I 
~(k, t)ikl"2o 4rrB co+ 2-co l  kco+ 

- ~ ( z ; .  k )  

sin co + t 

2 
coc s inco+ t+( / ;  A k)co, cosco+t-kco_  
co+ 

sin co_ t 

2 

+ b(b" k) co" sin co _ t - (/;/x k)co c cos co _ t (2.27) 
co 

The singularity at k = 0 is of the form k times a function of the polar angles 
of k, and therefore d(q, t [ql)  decays like Lq[-4 

These algebraic decays of S and d are caused by the magnetic field. In 
the case B = 0, the leading terms of S and ~ at k = 0 are regular, respec- 
tively k 2 and k (of course, faster algebraic decays are not excluded by the 
present argument). On the contrary, if we consider the current-current 
correlation function, by similar methods we find for it an algebraic decay, 
like lq[ -3, already in the case B = 0 .  



Time-Dependent Correlations for One-Component Plasma 237 

2.3. Inhomogeneous Plasma 

We now allow the background charge density - e p b  to be a function 
of position q (the magnetic field B, however, is again a uniform one). From 
the macroscopic equations (2.9) we now obtain, instead of (2,10), 

V~ [GpV,~b ] = -4~Pext (2.28) 

where a, fi = x, y, z label the coordinate axes; z is along the field. The non- 
vanishing elements of the dielectric tensor (6) G ,  are 

(.0 2 2 - -  cop 

8 z z = 8 1 1 - -  0 )2  

2 2 2 
( I )  - -  C O p  - -  ( D  c 

exx = eyy = e .  = co2 2 (2.29) 
- - ( . 0  c 

-- ico2p co,. 

These elements are position-dependent through co 2, which is defined by 
(2.12): their expressions (2.29) are valid in those regions of space where the 
variation of Pb(q) is slow enough. The external charge density is chosen as 
a point source: 

P~xt = 3(q) 

We were able to extract a sum rule from (2.28) only in special cases. 

2.3.1. A Special Class of  lnhomogeneous Plasma. In the 
presence of a magnetic field, we obtain a simple generalization of (1.2) for a 
restricted class of systems. Using cylindrical coordinates q = (r, ~0, z) with 
the z axis parallel to the uniform magnetic field, we choose the background 
charge density as a function --epb(r, ~o), independent of z, and we assume 
that Pb has, at infinity, a limit, which may, however, depend upon the 
direction in which r recedes to infinity: l i m ~  ~ pb(r, cp)= p~(~o) exists, for 
almost every ~0. 

The invariance along z suggests we introduce the Fourier transforms, 
with respect to z, of the potential ~b and the induced charge density p: 

~(r, ~o, k, co) = f dz e ikzr (p, z, co) (2.30) 

~(r, (p, k, co)= f dz e-ikZ p(r, qo, z, co) (2.31) 
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Actually, we only need to consider the value k = 0, at which (2.28) becomes 

V~[%eVe~(k = 0)] = -47~ 6(x) 6(y) (2.32) 
~,f l  ~ x ,  y 

This is the equation for the potential created by a uniformly charged wire 
(the z axis), and t~(k=0) is the corresponding induced charge density. 
Alternatively, (2.32) defines a problem in two-dimensional electrostatics. 
The total induced charge in a large disk of radius R, 

Q(co) = drr &o ~(r, q~,k=O, co) (2.23) 
~o 

can be obtained by adapting an argument of Ref. 4, as follows. In the 
asymptotic region (r large), where e• ~o) and ex.v(r, ~o) can be replaced by 
their asymptotic forms ~• and e&,.o~(~o), (2.32) becomes 

1 0 (rOq~ 1 c~ c ~  1[ d ~0 a 

with a solution of the form 

= - A  [In r + f ( tp) ]  (2.35) 

where f(~0) is a function (periodic in ~o with a period 2~z) determined by 
(2.34). Through the circle of radius R, the radial component of the elec- 
trical displacement 

has a flux 

A d~o e• = 4~z (2.36) 

while the radial component of the electrical field - (~?r has a flux 

2rtA = 4~z[1 + Q(co)] (2.37) 

Since taking k = 0  in (2.31) amounts to integrating p(r, qo, z, co) with 
respect to z, Q(co) is the charge induced in a cylinder A of length 2L, radius 
R, and axis z in the "long-cylinder" limit. From (2.36) and (2.37), we find 

lim lim QA(CO)= l /g--  1 (2.38) 
R ~ o o  L ~ o o  

where g is defined as an average at infinity of e• 

_ 1 ('2;~ 0 ) 2  - 2 2 
e = - -  - cop - c%. (2.39) 2re Jo dqo E: Lco((~0 ) = (O 2 2 

- -  COg. 
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and 

-2 2e2 f~'~ 
- - -  dr .~(~p) (2.40) ( D p - -  m 

We can now use (2.38) in (2.7). It must be noted, however, that the 
general form (2.3) of the fluctuation-dissipation theorem allows us to add 
to C~A(~o) a term proportional to 6(co), i.e., to add a constant to C~A(t). 
This constant is determined by the requirement that CsA( t=0)  has the 
right value. Here, this procedure gives 

- 2  

fl lim limoo IA (O:&2+P%,  R ~  oo 2 COS[-((J92 -~- ( j ) 2 ) 1 / 2 / ]  + 
2 

(J)c 
-2_}_ 2 COp O) c 

(2.41) 

This is the generalization of the sum rule (1.2) to the present class of 
systems. 

Special cases of (2.41) include a semi-infinite plasma bounded by a 
plane wall x = 0 [Pb(q) = 0 if x < 0, Pb(q) = Pb if x > 0], with the magnetic 
field parallel to the wall; then (~)p ~-(Dp/N~ , the surface plasma frequency. 
Another special case is a two-density plasma [ P b ( q ) = P -  if x < 0  and 
Pb(q) = P+ if x > 0), again with the magnetic field parallel to the plane 
x = 0; then eSp = [(2~e2/m)(p + + p _ )] 1/2. 

2.3.2. More  Compl icated Cases. An example: Solving (2.28) 
in less special geometries will in general result in a sum rule involving 
whole frequency ranges, as in (2.23) and (2.24). We shall only consider one 
example: a semi-infinite plasma bounded by a plane wall z = 0 [Pb(q)= 0 if 
z < 0 and Pb(q)= Pb if Z > 0], with the magnetic field along the z axis, i.e., 
normal to the wall. 

With Pext = 6(q), (2.28) becomes, in the present case, 

1~2~ ~2~ 
~ - - 7 ( e l l ~ z ) + e •  6(y)  6,z) ,2.42, 

ell and e• are given by (2.29) for z > 0, and are equal to 1 for z < 0. Now, 
the invariance along the xy plane suggests we introduce the Fourier trans- 
forms with respect to r = (x, y) 

~(k, z, 03) = f dr e ikr~(x,  y, z, o~) (2.43) 

~(k, z, o)) = f dr e i k -  r p(x, y, Z, 03) (2.44) 
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Equation (2.42) becomes 

(2.45) 

It is straightforward to solve (2.45) in each region z > 0 and z < 0, with 
the conditions that ~ is continuous and ~11(8~/8z) has a jump - 4 ~  at z =  0. 
The result is 

~=[ l+ (g t l e •  - -  \ell/-- I k l z  , z > 0  

4= 
= [1 + (ell e• Ikl exp(lkl z), z < 0 

(2.46) 

From Gauss's theorem, we then obtain the total charge Q(co) induced 
between the planes z - -  _+L: 

1 + (e~/ell) ~/2 
1 + (e~<l)v2 (2.47) 

Q(co) is the charge induced in a cylinder A of length 2L, radius R, and 
axis z in the "wide-cylinder" limit, and can also be written as 
limL ~ co lim~ ~ ~ QA(O)). 

In (2.46) and (2.47), the square roots (e• 1/2 and (el/ell) 1/2 must be 
defined as the positive square roots when ell and e• are both positive, for 

2 For other values of co, the square roots are instance, when o)2 > cop2 + c%. 
defined by analytic continuation in the co complex plane, with co 
understood as having an infinitesimal positive imaginary part. In this way, 
we obtain Im Q(o)), and, from (2.7), a sum rule for the correlation function. 

In the case co~ < cop the result is 

where 

fl lim lim 
L ---~ oo R ~  I( '2 ')"' 1 O)p (D c c IA(t) = COS t + dco k(co) cos cot 

( (~ + o,~)1/2 
do) h(co) cos cot 

-~- - COp 

! I  ' -  c02)(0)'- co~)l~J' ' 
- -  ( . 0 2  2 2 7"2 c o p  COp + coe. - -  2r~~ 

(2.48) 

(2.49) 
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The range of frequencies in (2.48) covers all the bulk wave frequencies 
given by (2.17) for any cos 0, plus the isolated frequency [(cop2 + co~)/211/2, 
which corresponds to a surface wave. Similar results are obtained in the 
case COp<coc, with, however, no isolated frequency contribution. The 
"long-cylinder" limit/~ limR ~ ~ limL ~ o~ IA(t) can also be computed. 

2.4. Dipole Sum Rules 

For a semi-infinite plasma or a two-density plasma there are other 
sum rules, involving the dipole moment of the pair correlation function. 
These dipole sum rules can be obtained by considering the linear response 
to charged plates (rather than charged points). The derivation and results 
are simple generalizations of what was done in Ref. 4. 

2.4.1.  S e m i - I n f i n i t e  P l a s m a .  We want to consider a semi- 
infinite plasma bounded by a plane wall z = 0  [Pb(q )=0  if z < 0  and 
Ph(q) = Pb if Z > 0] in a uniform magnetic field of arbitrary direction; we 
call 0 the angle between the normal to the wall (the z axis) and the 
magnetic field. In a first step, we assume the plasma confined between walls 
at z = 0 and z = L; the limit L--,  oo will be taken afterward. The pertur- 
bation is caused by charging the walls at z = 0 and z = L with oscillating 
surface charge densities _+cos cot. Let the induced surface charge density 
along the wall x = 0 be a(co). The electrical field is along the z axis, with a 
value 4zt(1 + a) determined by the total surface charge density, while the z 
component of the electrical displacement is 4~z, determined by the external 
surface charge density. The dielectric tensor relates the electrical dis- 
placement to the electrical field: 

4~z -- (erj cos 2 0 -t- ej_ sin 2 0) 4~z(1 + a) (2.50) 

Equation (2.50) determines a(co), which, from the microscopic point of 
view, is 

a(co) = [L/2 dz p(z, co) (2.51) 
"0 

The Hamiltonian of the perturbation is A cos cot, with 

A = -4~e [ dql zlN(ql) (2.52) 
"~0<Zl < L  

Therefore, from the fluctuation-dissipation theorem (2.3), we find, after 
having taken the limit L -~ oo, 

c ,~  t- 1 r dco 
-4~r | dz | dq, zlS(q, j - - - J  - - Ima(co)exp(- icot )  (2.53) 

7~ f l  - o o  co  
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The function S(q, t tql) should have a slow decay (as I q~[ -3) parallel to the 
wall, but as zl ~ 0% it is expected to decay as the bulk function (as tqll 5); 
therefore the ql integral in (2.53) is convergent. Finally, from (2.50) and 
(2.29), we obtain the dipole sum rule: 

-4rcfl f o  dz f dql zlS(q, t lql) 

1 
- 2 _co2 [(co2-co,2) c ~ 1 7 6  c~ t] (2.54) 

CO+ 

where co+ and co are given by (2.17). 

2.4.2.  T w o - D e n s i t y  P l a sma .  A very similar sum rule holds for a 
two-density plasma [pb(q)=p_ if z < 0  and pb(q)=p+ if z > 0 ] .  The 
argument is the same as above, except for the fact that the induced charge 
density p(z, co) now extends on both sides of the plane z = 0. Thus, we 
obtain a sum rule of the same form as (2.54), with ~ dz. . .  replaced by 
~_~ dz.-. ; the integral on Zl still is on positive zl only, and the frequencies 
co+ still are those pertaining to the region z >  0, i.e., computed with 
pb=p+.  

3. MICROSCOPIC THEORY 

3.1. General Setting 

We reinvestigate the derivation of sum rules from a microscopic view- 
point. The setting is the same as in Section 3 of Ref. 4, with the appropriate 
modifications to include the magnetic field. We assume that the time- 
dependent correlation functions of an OCP with background density Pb(q) 
obey the BBGKY equation 

0 
~t p(q, v, tl v)= - v .  V~p(q ,  v, tl u )  

e 
- - -  Iv / \  B + E(q)] V~p(q, v, t[ U) 

m 

e2 f dq' F(q - q') V~[p(q, v; q', t l U) 
m 

- p ( q ' )  p(q, v, tl U)] (3.1) 

The correlation functions p(q, v; q', v';... [ U) between a set of particles with 
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positions and velocities q, v; q', v';.., at time t and another set of particles 
U-- (ql, vi ; q2, v2 ;...; qk, v~) at time t = 0 are defined by 

p(q, v; q', v'; .... t] U)=  (IN(q,  v, l) N(q',  v', t)..-]nc 

x IN(q , ,  v 1, O ) ' " N ( q ~ ,  v k, 0)]no) (3.2) 

where N(q, v, t) is the microscopic number density at point q, velocity v, 
and time t. The notation [ " ' ] , c  means that the contribution of coincident 
particles is not included, and ( - . . )  is the thermal average. When the set U 
is empty, the correlations reduce to their equilibrium value, which are the 
static configurational correlations p(q, q',...) multiplied by the Maxwellian 
distribution of velocities. In (3.1) and in the sequel, the suppression of a 
velocity argument means that it has been integrated out. In particular, the 
structure function (1.1) is 

S(q, t l q l )=e2(p (q ,  t [ q l ) - - p ( q ) P ( q l ) ]  (3.3) 

In (3.1), F(q)= -Vq(1 / lq r ) i s  the Coulomb force and 

E ( q ) = e  f d q ' F ( q - q ' ) [ p ( q ' ) - p b ( q ' ) ]  (3.4) 

is the electric field due to the total charge density. When the particles are 
constrained to move in a restricted domain D bounded by hard walls, the 
configurational integrals are restricted to D and Eq. (3.1) is supplemented 
by the condition of elastic collisions at the walls. 

We now proceed as in Section 3 of Ref. 4. We introduce the truncated 
correlations 

PT(q, V, t[ U)=p(q ,  v, tl U ) -  p(q, v) p(U) (3.5) 

Pr(q, v; q', v', tl U )=p(q ,  v; q', v', tl U ) -  p(q, v) p(q', v', t[ U) 

-- p(q', v') p(q, v, t] U) -- p(q, v; q', v') p(U) + 2p(q, v) p(q', v') p(U) (3.6) 

and assume that these functions have some decay properties in velocity and 
configuration space: 

IPr(q, v, tl U) <~ M/lv[ ~, r />5  (3.7) 

for fixed q, t, and U, and 

IPr(q, v, tl g)l ~ M/lql 3 (3.8) 

for fixed v, t, and Uo 
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The condition (3.7) ensures a sufficiently fast decay in velocity space at 
time t (at time t = 0 ,  the decay is Gaussian), whereas condition (3.8) is 
compatible with the findings of Section 2.2, where the current current 
correlations behave as Iq[ 3 ]ql ~ oo. Other clustering assumptions will be 
introduced at the appropriate places. 

After some algebra the BBGKY equation (3.1) yields for the truncated 
functions 

~tpr(q, v, gl u)= --V" VqpT(q, v, gl u) 

e 

m 

e 2 

r n  

- - -  Iv /x B+ E(q)]'V~pr( q, v, tl U) 

- - -  [V~p(q, v)]" dq' F(q -q ' )  Pr(q', t[ U) 

e2f q, 
m F(q-q ' )  V~pT(q,v;q',tlU) (3.9) 

When we multiply (3.9) by a velocity-independent function and integrate 
on q and v, we get, after an integration by parts, 

Ot f dq f(q)Pr(q, t' U)= f dq [%f(q)3"f  Pw(q, v, tl ~) (3.1o) 

Equations (3.9) and (3.10) have to be supplemented with initial conditions 
determined from the statics. At t = 0 

k 

epT(q, t = 01 U) = e[p(q, q~ ..... qk) + ~ 6(q -- qi) P(q~ ..... qk) 
i - - I  

-P(q)  P(ql,..., qk)] f i  \ ~ m J  exp - - f l v  2 (3.11) 
i = 1  

is the static excess charge density at q when particles at U =  
(q~, Vl ;...; qk, Vk) are fixed. This excess charge satisfies the charge and dipole 
sum rules of Ref. 7: 

e f dq pr( q, t = 0 1 U ) = O  (3.12) 

e f dq qPr(q, t =0]  U) = 0  (3.t3) 
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3.2. H o m o g e n e o u s  Plasma 

In the homogeneous plasma, the local neutrality imposes p(q)= Pb 
and E(q)=0. Because of translation invariance, it is convenient to 
introduce the Fourier transforms of the correlations. We consider 
specifically the correlations of the charge and of the current with the phase 
space densities of a general set of particles U, 

e ~ dq e-ikqpr(q, t[ U) = C(k, t r U) (3.14) 
d 

e f dq e -ikq f dv vpv(q, v, t[ U)= d(k, t[ U) (3.15) 

Notice that when U=(ql=O,v~) reduces to a single particle and the 
integral on v~ is performed, the quantities 

e f dv~ C(k, t{O, v~) = ,S(k, t) (3.16) 

e f dr1 d(k, t] O, vl) = ~l(k, t) (3.17) 

are the Fourier transforms of the charge-charge correlation (2.19) and 
charge current correlation (2.26). By homogeneity in space and time, one 
has 

Pr(q, v, t]0, v~)= p ( -q ,  Vl, - t [ 0 ,  v) (3.18) 

and this implies also with the definitions (3.14) and (3.15) that 

f dv 1 u 1C(k, t[ 0, Vl) = ~/( - k ,  - t) (3.19) 

One finds from (3.9) and (3.10) that the correlations (3.14) and (3.15) 
obey the equations 

a ~(k, t l u ) = e ~ ( k , t [ U ) A B - "  2 k #t m zo~ p ]-~ C(k, t] U) (3.20a) 

+ ie f dv (k" v) V~T(k, v, tl U) (3.20b) 

e 3 

+ - - f  dq f d q ' e - i k q r ( q - q ' ) p r ( q , q  ' , t tU) (3.20c) m 

6 -  
at C(k, tl U)= - i k .  3(k, t[ U) (3.21) 
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If the terms (3.20b) and (3.20c) are neglected, Eqs. (3.20a) and (3.21) are 
analogous to the macroscopic equations (2.9) with Pext set equal to zero, 
and ~(k, t lU) and ~(k, t l U) corresponding to the charge and current den- 
sities. Therefore, (3.20a) and (3.21) describe free macroscopic charge and 
current oscillations in the plasma. The terms (3.20b) and (3.20c) (a "kinetic 
energy" term and a "collision" term) incorporate the effects of the 
microscopic correlations. We show that these terms do not contribute to 
the long-wavelength limit of charge charge and charge-current 
correlations. As a result, we will find that the behaviors (2.20) and (2.27) 
are exact in the microscopic theory. 

3.2.1. Dynamics of the Correlat ions in the Long-Wave-  
length Limit.  The small-k behavior of Eqs. (3.20) and (3.21) is 
investigated under the assumption that 

~(k, tl U ) =  do(/~, tl U) + o(1), [c=k/tk [ (3.22) 

i.e., d(k, t l U) has a limit when k ~ 0 in a fixed direction/~. Since d(k, t i U) 
is the Fourier transform of the current correlated with the phase space den- 
sities of a general set of particles U, the assumption (3.22) is compatible 
with the spatial decay discussed in Section2.2: for a general U, 
Pr(q, v, t[ U) should behave as a current-current corelation with a Iql 3 
decay. We deduce immediately from Eq. (3.21) that 

O C(k =O' tI U) ~ [ j Ot -=~ e f dqpr(q, tlU) = 0  (3.23) 

With the initial condition (3.12) (the static charge sum rule), this implies 
that 

C(k=O, ti U)=e jdq p(q, tl U)=O (3.24) 

for all t and U. We therefore conclude that the charge sum rule remains 
true for all times in the presence of the magnetic field. 

We now write the small-lkl expansion of ~(k, tl U) as 

C(k, tt U)= Cl(fc, tl U)lkl + o(Ikl) (3.25) 

and suppose, moreover, 

f dq I dq'lpv(q, q', t[ U)[ < co (3.26) 

The assumptions (3.25) and (3.26) are again compatible with the findings 
of Section 2.2: for a general U, p(q, t l U) and p(q,q', t l U) behave as 
charge-current correlations with a hql 4 decay. 
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Letting now k ~ 0 in (3.20) and (3.21), we find 

3--do(it, t[ U) e do(E ' tl U) A B-ioJycC~(tc, t[ U) 
Ot =m (3.27) 

~ tl u )=  -ilk.do(f:, t, U) 
~t 

(3.28) 

Under the above assumptions, the terms (3.20b) and (3.20c) are o(1) [the 
integrand of (3.20c) are antisymmetric in q, q' at ]kl = 0]. 

Equations (3.27) and (3.28) form a closed set. One obtains by suc- 
cessive iterations 

~2 

~t--~ cI(L t l u )=  -im,.,~. Edo(L t l u) A 5] -co~Ct(s t I U) (3.29) 

,co:(k cosO[,)'do([C, ttU)=~o~ C~(Fc, tIU) -~C~(k, t[ U)= " ~ ~-  (3.30) 

with/3 = B/IBI and cos 0 =/~"/3, and finally 

4 d2 t 2 2 2 ~-~+(o)p~+~o~2)~--tS+cocco, cos 0 Cl([c, tlU)=O (3.31) 

It is easily checked that the characteristic frequencies of Eq. (3.31) are 
precisely given by (2.17). Hence, Cl(k, tj U) [as well as do(/~, tl U)] is of 
the form 

Cl([~,tIU)=Acos~o+t+Bsinco+t+Ccoso) t+Dsina)_t  (3.32) 

The coefficients have to be determined by the initial conditions, i.e., 
evaluating the equilibrium value CL(/~, t = 0[U) as well as (3.28)-(3.30) at 
t=0 .  Since the static truncated correlations have a fast decay, 
Ct(/~, t - -0l  U) is given with (3.25) and (3.14) by the expression 

Ci(/~, t=OI U)= - ie fdqqpr(q,  t=OI U)=O (3.33) 

This vanishes because of the static dipole sum rule (3.13). The zero-time 
derivatives can be computed from 

do(/~, t = 0 t  U)=e f dq f dv vpv(q, v, t = 0 t  U) 

=eVp(U) (3.34) 
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with V= Y~= 11)i- The final result is 

Cl(k, t}U)=ep(U) a -e)z (ncV'(f) Ak)(cosco+t-cosco t) 
fD+  

_ c o +  

V ( e )  sinco t - c o + s i n c o + t ) ]  (3.35) +/~. 

This is the exact small-k behavior of the (n + 1)-point function (3.14). 
Two special cases are of interest. If one integrates (3.35) on vl,..., v~, one 
gets [since p(U) is Maxwellian] 

CI(/~, t[q~,..., qk)=0 (3.36) 

for all t, q~ ..... qk" When Pr(q, t] ql ..... qk) has an integrable first moment, 

C~(fc, t]ql,..., qk) = - ie  f dqqpr(q, t[ql,..., qk)=O (3.37) 

is the time-dependent generalization of the static dipole sum rule (3,33). 
We can also recover from (3.19) the small-k behavior of the charge 

current correlation d(k, t). The charge sum rule (3.24) implies that 
d (k=0 ,  t )=0 .  Moreover, when we multiply (3.25) by v~ with U---(0, v~) 
and integrate it on vl, we find that the microscopic motion of d(k, t) at the 
order Ik[ is the same as formula (2.27), which was obtained from the 
macroscopic equation (2.9). An explicit expression of do(/C, tlU) for a 
general U can also be obtained by specifying the appropriate initial con- 
ditions. 

3.2.2. The Structure Function. According to (3.16), (3.17) and 
(3.20), S(k, t) and ~(k, t) obey the equations 

c~ ,7(k, t ) = e  ,7(k, t) A • - '  2 k c~t m tcop I ' ~  g(k, t) (3.38a) 

+ ie f dv (k. v) v~r(k, v, t[0) (3.38b) 

+-~ dq dq' e-~kqF(q--q')pr(q,q', t lO) (3.38c) 

S(k, t)= -ik" ~(k, t) (3.39) 
Ot 
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Since ~(k = O, t )=  O, we assume that for small Ikl, 

d(k, t ) =  dl(/~, t)Ikl + o(Ikl) (3.40) 

One concludes from (3.39) that S(k, t) must be of the order of Ikl 2. We set 

S(k, t) = S2(fc, t)[kl 2 + o(Ik[ 2) (3.41) 

and 

f dq f dq' Iql tpv(q, tl q', 0)1 < Go (3.42) 

The assumptions (3.41) and (3.42) are also compatible with the I q l -  5 decay 
of the charge-charge correlations found in Section 2. 

The term (3.38b) is o(Jkl), since (3.18) together with the charge sum 
rule (3.24) implies 

t3r(k = O, v, r iO)= f dqpT(q, v, tlO) 

=fdqpT(--q, --tlO, v)=O (3.43) 

With the change of variable q'--, q ' +  q and the invariance under trans- 
lations, the term (3.38c) can be written as 

6, 3 

f dq' F(-q ' )  f dq e- 'kqpr( -q ,  - t lq ' ,  O) m (3.44) 

It follows from (3.42), the charge sum rule (3.24), and the dipole sum 
rule (3.37) that this term is also o(]kJ). 

In the limit ]kl-~ 0, Eqs. (3.38) and (3.39) reduce to 

dl(fc, t) e dl(fC, t)/x B-iCO2pfcSz(fC, t) (3.45) 
8t m 

8 
& $2(/~, t ) =  -i/~. dl ( ]~  , t) (3.46) 

which have the same structure as (3.27) and (3.28). The solution is 
therefore of the form (3.32). Since S(k, t) is even in time, one needs only the 
two initial conditions 

S2(/~, t =  O)= 1/4nfl (3.47) 

822/47/'1-2-17 
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(the Stillinger-Lovett second moment condition) and 

0 2 ~o ~ 

(~t--"~ 82(]~, t=O)  = -i--k.d~(k,m t=O) A B-co2s2(fr t=O) 

2 
_ cop (3.48) 

4rc~ 

because d1(/~, t = O) = 0 [see (2.27)]. 
One recovers then that S(k, t) is given by the formula (2.20) at the 

order [kl 2. 

3.3. Inhomogeneous Plasma 

When the OCP is not uniform, Fourier transforms are not well adap- 
ted, because of lack of translation invariance. Our starting point is again 
Eqs. (3.9) and (3.10), but the configurational integrals occurring in this 
subsection are formal. They are in general not absolutely convergent and 
their meaning has to be specified in each particular case. As in (3.20) and 
(3.21), we cast the equations of motion in a form analogous to the 
macroscopic ones by singling out some microscopic correlations. For this 
purpose, we set 

, 1 
f dq ~ S(q', t[ ql) : (~(q, q,, t) (3.49) 

f dv Vpr(q, v, t[ ql) = d(q, ql, t) C 2 (3.50~ 

One gets from (3.9) and (3.10) with the choice f (q)= l/[q] 
0 1 
otd(q, q l ,  t )=  --~co2(q) VqO(q, q l ,  t) +co, d(q, q l ,  t) A ~) 

+ Rl(q, q,, t) (3.51) 

0 f ( ~[)d(q,q, , t )  (3.52) Cgt 0 (0 '  q l ,  t)  = dq V 1 

Rl(q, ql, t) involves the three-body correlation, the electric field due to the 
inhomogeneity, and a kinetic energy term: 

e3 f R~(q, ql, t)=--E(q)pr(q, tlql) -e2 dvv(v'Vq) pr(q,v, tlql) 
m 

+ ~  f dq' F(q-q')Pr(q, q', tlq,) (3.53) 
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It is shown in the Appendix that (3.51) and (3.52) can be combined into 
the single equation 

~.p ~-~ V~b(q, ql, co) = R2(ql, 09) (3.54) 

In (3.54), co is the time Fourier transform variable. The tensor e~z(q, co) has 
the same form as in (2.29), but with the local plasmon frequency cop2(q)= 
4zr(e2/m) p(q) defined in terms of the actual particle density p(q). The 
R2(q~, co) incorporates all the contributions coming from R~(ql, t). 

The equivalent of the long-wavelength limit amounts to performing 
the q~ integral on (3.54) (with an appropriate limiting procedure if it is not 
absolutely convergent). If it is possible to show that 

f dq~ R2(q~, co)=0 (3.55) 

then (3.54) reduces to an equation involving only r ql, co): 

(V ' ) ~  V CO2((D2 __ (2)2) f dq I f dq 2 e~(q, co) Vat(q, q l ,  CO) = 0 (3.56) 
c(fl 

When the plasma is homogeneous, one can check from the results of Sec- 
tion 3.2 that (3.55) holds (see Appendix). Then, writting (3.56) in Fourier 
space, it becomes identical to the fourth-order differential equation (3.31) 
for $2([c, t). When B=0 ,  one can also derive the sum rule (1.2) from (3.56). 
For a general inhomogeneous plasma without symmetries and B # 0, we 
have not been able to draw definite conclusions from (3.54) because of the 
lack of information about the asymptotic behavior of the correlations in 
space. 

Let us, however, show how it is possible to recover the special class of 
inhomogeneous plasmas discussed in Section 2.3. Choosing f(q)= 1 in 
(3.10), one notes that the charge sum rule (3.24) is true. According to 
(2.38), we always interpret the q~ integral as the "long-cylinder" limit. Now, 
because of the charge sum rule 

V~ f dq, O(q, ql, co)= -4rc f dq' S(q', col ql)=O (3.57) 

Thus, ~ dql ~(q, ql, co) is harmonic in q, and hence constant with respect to 
q (assuming boundedness at infinity): 

fdql~b(q, ql,co)=fdqlr ql,co)= lim lim IA(CO) (3.58) 
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Arguments are given in the Appendix to show that (3.55) holds. Then, 
again interpreting the ql and q integrals in (3.56) as "long-cylinder limits," 
and assuming that they can be permuted, one gets, after an integration by 
parts, 

602((.02 -- (.0c 2) f dq ~ V ~  [e=e(q, 0))V~ 1 ]  ~ ~ f dq,~(q, ql,0)) 

F 1 ] j i m o o / i m  IA((0)=0 (3.59) = (02((02_ (0,2) f dq ~VeLe,o(q,o,)V~ ] 

Transforming the q integral into an integral on the surface 8A of the cylin- 
der A, we have 

fAdq~V~[e=e(r, cp,V=-~q~]=foA ;e~e(r, qo,(V=+)dcr ~ (3.60, 

The bases of the cylinder do not contribute in the limit L-+ 0% and, as 
R -+ c~, we are left with 

f~rt +oo • +12)  1/2 r = R  Ji+m R dq) ea(R, q)) f oo dZ sr (r2 =4rcg (3.61) 

Here g is given by (2.39) and (2.40), since by neutrality the particle density 
p(q)=p(R,~o) tends to the asymptotic background density p~o(q~) as 
R--+ oo. 

Introducing (3.61)in (3.59), one obtains finally 

0)2((02 - 2 2 - (0p - 0)c) lim lim IA((0 ) = 0 (3.62) 
R~ov L~oo 

Coming back to the time variable and solving the differential equation with 
the appropriate initial conditions gives (2.41). 

3.4. Dipole Sum Rules 

The dipole sum rule of Section 2.4 can be recovered from a simple 
relation between the semi-infinite and bulk structure functions. A semi- 
infinite plasma bounded by a plane wall z = 0 is subjected to a uniform 
magnetic field having an angle 0 with the normal to the wall. If S~ t) = 
S~176 t]0) is the corresponding bulk structure function, one establishes 
along the same lines as in (3.52) and (3.53) in Section 3.3 of Ref. 4 that 

 l  odqzs(q, t t Zl, (363, 
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This holds under the assumption that the difference z(S(q, tJz~)- 
S~(q, t[zl)) is jointly integrable in q and z~, and that the charge sum rule 
holds for the semi-infinite system. Since S~ t) is O(1/[q[5), its Fourier 
transform S(k, t) is continuously differentiable, and (3.63) can be written as 

+ o r  i + o r  

fo dz~ ~>odqzS(q, t ,z,)  =~-s fo dz f dl<il(z-zl)f(l) (3.64) 

with 

--i f dq zS~ t) e itz f(1) 

= d-~-S~ k,.= 
dkz k j  = O, k z  = l 

The rotational invariance of S~(q,t) implies that 
f ( - l )  = -f(l). 

Therefore the right-hand side of (3.64) is equal to 

o dZl at---~-e 

1 + 2  (lf(l) - i , ~ ,  -4nfdzlfa--[-e 
1 f ( / )  

- 21 im l 

- 2 77l S ( ,O,l , t )  

= - l ~ ( o , o , , , t )  

(3.65) 

f ( 0 ) = 0  and 

(3.66) 

Since B has an angle 0 with the z axis, (3.66) is given by (2.20), and the 
final result is identical to (2.54) [note that S(q, tlq,)= S(q,, - t jq)].  The 
same method enables us to establish the corresponding dipole sum rules for 
the two-density plasma. 

4. C O N C L U D I N G  R E M A R K S  

The object of this study is twofold. First, we have obtained exact 
dynamical sum rules for the one-component plasma, which might be useful 
in testing approximate theories or comparing with experiments. More 
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generally, we would like to get a better understanding of the relation 
between macroscopic electrodynamics and statistical mechanics. Here and 
in Ref. 4, this relation has been made precise in a number of cases. 
However, none of them include a dissipation mechanism. The analysis of 
Ref. 4 and of the present paper cannot be extended to the OCP with an 
(infinite) periodic background where the plasmon mode is damped as a 
consequence of the coupling of the electrons with the ionic lattice, (8) and it 
cannot be generalized to multicomponent systems which show dissipation 
even in the long-wavelength limit because of interparticle collisions. 

It should be stressed that the decay in time shown here in (2.23) and 
(2.48) and resulting from a superposition of oscillations over a continuum 
of frequencies is not related to any dissipation. For instance, the long-time 
behavior in (2.23) is governed by the singularity at co = coo= (@ + co2) ~/2, 
and is easily shown to be proportional to cos(co0t-z/4)/t  ~/2. However, this 
damping of the oscillation is only a trivial dispersion effect, since (2.23) was 
obtained by building a wave packet with undamped plane waves of dif- 
ferent frequencies. Similar considerations apply to (2.48). 

A P P E N D I X  

To obtain Eq. (3.54), we start from the time Fourier transform of 
(3.51) and (3.52) (keeping the same symbols d, r 

e 2 

-icod(q, ql, co)= - - -  p(q) Vq~(q, ql, co) + co~.d(q, q~, co)/x [~ 
117 

+ Rl(q, ql, co) 

ql, V 1 -ico4'(O, co)= f dq ( -~ ) " d( q, q l ,co) 

(A1) 

(A2) 

One multiplies (A2) by -ico and substitutes (A1). Repeating this operation 
three times and using (d A/~)/x/~ =/;(d./;) - d, one arrives at 

co4q~(O, q, o)  : f dq �9 co2 p(q) VqqS(q, q,, co) 

e 2 

+ icoo~c-- p(q) VqO(q, ql, co) a D 
m 

e 2 
_ co2 _ p(q)/~[Vq~b(q, q~, co)./~] 

+ icoco2d(q, ql, co) l + R2(q~, co) (A3) 
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with 

( V ' )  R2(ql, co) = - f d q  "{co2Rl(q, ql,co)+icococRl(q, ql,co) AD 

--c~ ql, cO)'/~]} (14) 

One uses (A2) to eliminate d(q, q~, co) from (A3) and writes 4(0, ql, 09) in 
the form 

4(0, q,, co) = J dq b(q) ~(q, q,, s 

(1) dq V-~t "VqO(q, ql, co) (A5) 

With this and rearranging terms, we get (3.54). 
Let us show that SdqlR2(ql)=O for a homogeneous plasma. By 

inspection of (A4) and (3.53), this will be the case if the following integrals 
vanish [E(q)= 0 when the plasma is homogeneous]: 

fdq~fdq(V~qr) fdq 'F~(q-q ' )pr(q,q ' , t ,q l )=O ,17) 

Because of translation invariance, (A6) can be Fourier transformed to 

fdql fdq(V~q[) fdlAufl(V'Vq)PT(q--ql, Vl, t[ O) 

( 
The second factor is identical to the terms (3.38b), which was shown to be 
o(]kJ) [see (3.43)]; therefore (18) vanishes. In the same way (17) is equal 
to -4zcikJlkl 2 times the term (3.38c), which is also o([k]) [see (3.44)]; 
thus, (17) vanishes. 

Note that when the plasma is uniform R2(ql)= Rz(rl, zl) is invariant 
under the rotations around /~ [q~ =(r~, zl, (pl) with z~, along /;]. This 
follows from the form of the integrand of (4) and the fact that R~(q, q~) is 
covariant under such rotations. Therefore S dq~ R2(ql)= 0 implies 

fO+~ f+oo r 1 dr1 dzl Rz(rl, z i )=  0 (A9) 

To show (3.55) when the plasma is translation invariant only along/~, 
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we argue, as in Section 3.3 of Ref. 4, that  we can exchange the q and qL 
integrals occurring in (3.55) and (A4). Let  

R(2~'~~ RC2~'~~ zl) 

be the quant i ty  (A4) corresponding to a uniform background  with density 
p~(~0o). Then  (A9) implies 

d~o o r~ dr I dzj R~~176 z l ) =  0 (A10) 

We can write [set t ing q~o = (Pl in (A10)]  

f f? fo dql R2(q~)= dqol r~ d r 1  dz~ [R2(rl,-71, ~01)-/(2~176176 2"1) ] 
- - o ( 3  

(All) 

N o w  R2(qx) -R(2~ '~ t (q l )  involves the differences of correlat ions such as 

Pr(q, q', t l q l ) - P ~ ' ~ l ) ( q ,  q', tlq~) 

If the spatial a rguments  are far apart ,  both  PT and pet ~ '~ /  decay by 
clustering; if all a rguments  tend to infinity in the same direction q~i, 
p v - p ~  ~ , ~  vanishes because of the convergence of the correlat ions to 
those of the uniform plasma with density P~(q~l). We may  assume at this 
point  that  the decay in the spatial  variables enables us to pe rmute  the q 
and q~ integrals. When  the ql integral is per formed first on (3.53), we have 

f dq~ R~(q, ql,  co) = 0 (A12) 

because of the charge sum rule (3.24), and thus (3.55) will hold. 
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